🌟 MySQL|索引



SQL 基础见:MySQL | SQL学习笔记

索引是一种用于快速查询和检索数据的数据结构,其本质可以看成是一种排序好的数据结构。

索引底层数据结构存在很多种类型,常见的索引结构有:B 树、 B+ 树 和 Hash、红黑树。在 MySQL 中,无论是 Innodb 还是 MyISAM,都使用了 B+ 树作为索引结构。

索引的优缺点

索引的优点:

  • 查询速度起飞 (主要目的):通过索引,数据库可以大幅减少需要扫描的数据量,直接定位到符合条件的记录,从而显著加快数据检索速度,减少磁盘 I/O 次数。
  • 保证数据唯一性:通过创建唯一索引 (Unique Index),可以确保表中的某一列(或几列组合)的值是独一无二的,比如用户ID、邮箱等。主键本身就是一种唯一索引。
  • 加速排序和分组:如果查询中的 ORDER BY 或 GROUP BY 子句涉及的列建有索引,数据库往往可以直接利用索引已经排好序的特性,避免额外的排序操作,从而提升性能。

索引的缺点:

  • 创建和维护耗时:创建索引本身需要时间,特别是对大表操作时。更重要的是,当对表中的数据进行增、删、改 (DML操作) 时,不仅要操作数据本身,相关的索引也必须动态更新和维护,这会降低这些 DML 操作的执行效率。
  • 占用存储空间:索引本质上也是一种数据结构,需要以物理文件(或内存结构)的形式存储,因此会额外占用一定的磁盘空间。索引越多、越大,占用的空间也就越多。
  • 可能被误用或失效:如果索引设计不当,或者查询语句写得不好,数据库优化器可能不会选择使用索引(或者选错索引),反而导致性能下降。

但用了索引也不一定能提高查询性能。大多数情况下,合理使用索引确实比全表扫描快得多。但也有例外:

  • 数据量太小:如果表里的数据非常少(比如就几百条),全表扫描可能比通过索引查找更快,因为走索引本身也有开销。
  • 查询结果集占比过大:如果要查询的数据占了整张表的大部分(比如超过20%-30%),优化器可能会认为全表扫描更划算,因为通过索引多次回表(随机I/O)的成本可能高于一次顺序的全表扫描。
  • 索引维护不当或统计信息过时:导致优化器做出错误判断。

索引类型

BTree 索引:MySQL 里默认和最常用的索引类型。只有叶子节点存储 value,非叶子节点只有指针和 key。存储引擎 MyISAM 和 InnoDB 实现 BTree 索引都是使用 B+Tree,但二者实现方式不一样。

MyISAM 引擎中,B+Tree 叶节点的 data 域存放的是数据记录的地址。在索引检索的时候,首先按照 B+Tree 搜索算法搜索索引,如果指定的 Key 存在,则取出其 data 域的值,然后以 data 域的值为地址读取相应的数据记录。这被称为“非聚簇索引(非聚集索引)”。

InnoDB 引擎中,其数据文件本身就是索引文件。相比 MyISAM,索引文件和数据文件是分离的,其表数据文件本身就是按 B+Tree 组织的一个索引结构,树的叶节点 data 域保存了完整的数据记录。这个索引的 key 是数据表的主键,因此 InnoDB 表数据文件本身就是主索引。这被称为“聚簇索引(聚集索引)”,而其余的索引都作为 辅助索引,辅助索引的 data 域存储相应记录主键的值而不是地址,这也是和 MyISAM 不同的地方。在根据主索引搜索时,直接找到 key 所在的节点即可取出数据;在根据辅助索引查找时,则需要先取出主键的值,再走一遍主索引。 因此,在设计表的时候,不建议使用过长的字段作为主键,也不建议使用非单调的字段作为主键,这样会造成主索引频繁分裂。

B 树& B+ 树两者异同:

  • B 树的所有节点既存放键(key)也存放数据(data),而 B+ 树只有叶子节点存放 key 和 data,其他内节点只存放 key。
  • B 树的叶子节点都是独立的;B+ 树的叶子节点有一条引用链指向与它相邻的叶子节点。
  • B 树的检索的过程相当于对范围内的每个节点的关键字做二分查找,可能还没有到达叶子节点,检索就结束了。而 B+ 树的检索效率就很稳定了,任何查找都是从根节点到叶子节点的过程,叶子节点的顺序检索很明显。
  • 在 B 树中进行范围查询时,首先找到要查找的下限,然后对 B 树进行中序遍历,直到找到查找的上限;而 B+ 树的范围查询,只需要对链表进行遍历即可。

主键索引

数据表的主键列使用的就是主键索引。

一张数据表有只能有一个主键,并且主键不能为 null,不能重复。

在 MySQL 的 InnoDB 的表中,当没有显示的指定表的主键时,InnoDB 会自动先检查表中是否有唯一索引且不允许存在 null 值的字段,如果有,则选择该字段为默认的主键,否则 InnoDB 将会自动创建一个 6Byte 的自增主键。

正确使用索引

选择合适的字段创建索引

  • 不为 NULL 的字段:索引字段的数据应该尽量不为 NULL,因为对于数据为 NULL 的字段,数据库较难优化。如果字段频繁被查询,但又避免不了为 NULL,建议使用 0、1、true、false 这样语义较为清晰的短值或短字符作为替代。
  • 被频繁查询的字段:我们创建索引的字段应该是查询操作非常频繁的字段。
  • 被作为条件查询的字段:被作为 WHERE 条件查询的字段,应该被考虑建立索引。
  • 频繁需要排序的字段:索引已经排序,这样查询可以利用索引的排序,加快排序查询时间。
  • 被经常频繁用于连接的字段:经常用于连接的字段可能是一些外键列,对于外键列并不一定要建立外键,只是说该列涉及到表与表的关系。对于频繁被连接查询的字段,可以考虑建立索引,提高多表连接查询的效率。

被频繁更新的字段应该慎重建立索引

虽然索引能带来查询上的效率,但是维护索引的成本也是不小的。 如果一个字段不被经常查询,反而被经常修改,那么就更不应该在这种字段上建立索引了。

限制每张表上的索引数量索引

并不是越多越好,建议单张表索引不超过 5 个!索引可以提高效率,同样可以降低效率。

索引可以增加查询效率,但同样也会降低插入和更新的效率,甚至有些情况下会降低查询效率。

因为 MySQL 优化器在选择如何优化查询时,会根据统一信息,对每一个可以用到的索引来进行评估,以生成出一个最好的执行计划,如果同时有很多个索引都可以用于查询,就会增加 MySQL 优化器生成执行计划的时间,同样会降低查询性能。

尽可能的考虑建立联合索引而不是单列索引

因为索引是需要占用磁盘空间的,可以简单理解为每个索引都对应着一颗 B+ 树。如果一个表的字段过多,索引过多,那么当这个表的数据达到一个体量后,索引占用的空间也是很多的,且修改索引时,耗费的时间也是较多的。如果是联合索引,多个字段在一个索引上,那么将会节约很大磁盘空间,且修改数据的操作效率也会提升

注意避免冗余索引

冗余索引指的是索引的功能相同,能够命中索引(a, b)就肯定能命中索引(a) ,那么索引(a)就是冗余索引。如(name,city)和(name)这两个索引就是冗余索引,能够命中前者的查询肯定是能够命中后者的。在大多数情况下,都应该尽量扩展已有的索引而不是创建新索引。